

Emmanuel Di Folco (emmanuel.difolco@cea.fr)
Pierre Léna, Pernelle Bernardi, Pierre Gigan (OBSPM)

1609: first look at the Moon through a scope

Thomas Harriot

Galileo Galilei

Ending of Aristotelian thinking

New mountains higher than Earth's mountains

XO for Astronomy

Adding a scope in front of the camera

Using half-binoculars

Technical data

- The camera
 - 640x480 pixels
 - 30 images/s
 - automatic gain
 - Moon Diameter = 6 pixels
- With current scope added
 - 10x magnification
 - Moon Diam = 60 pixels

Specifications

- Spatial Resolution:
 9 pix for largest visible craters
 => x17 magnification
- achromatic, compact and afocal scope's lens
- off-the-shelf technology:x10, x16 magnification (binoculars)
- customised solution: x20 zooming factor?
- © Cost: prototype = 30-60 €/unit, Final cost must be few \$/unit for large ordered quantities (~10 000 ?)

Preliminary tests

- Robust and stable assembling but...
- Saturation issue
- JPEG Compression
- Moon Diam ~65 pix

Preliminary tests

Solutions?

- Use neutral density filter(s)
- Manually adjust the camera gain
- Load raw images
- Increase the magnification

Simulated images

(here, I have degraded the natural resolution of a very nice image of the Moon down to more reasonable values, which correspond to the various technical solutions that we could dispose of...)

Pedagogical project

- 1-My very first image of the Moon
- 2-What is an image?
- 3-Moon phases
- 4-Moon phases simulation

- 5-Shadows and Relief
- 7-Moon size and orbit
- 8-Earth-Moon distance

1- My very first image of the Moon

- Strategy: «Can we see the Moon? When? Where?»
- Forecast: draw the Moon as you imagine it should look like today/tonight
- Training: testing the XO with the scope, simulation of spotting activity using a ball as a fake Moon (pointing, focussing, recording,...)
- Each pupil makes his/her own image alone
- All pupils together: debating about the protocol, observations, issues, discussion. Make a written report

1- My first image of the Moon

- Discussion: «Do all images look the same ?»
- Comparison and selection of the best image:
 - Image files transfer with other pupils, using the XO file exchange facility
 - Selection criteria: based on focus, orientation, brightness, composition, blur,...

Analysis:

- Size of the images?
- Recording parameters? (date, time, location, weather,...)
- Register all information in an electronic 'science experiment notebook'
- What can be seen on the images? (bright and dark zones with various shapes)

Observations du 21/10 au 20/11/2002

Extension: How big can you enlarge your image?

2- What is an image?

- Discovering the pixels
- Measuring the Moon size in pixels
- Drawing known objects with pixels (grid/mesh)
- Comparing with a picture of those objects
- How are the contours changed?
- Image quality/resolution

2-What is an image?

New TOOLs to work out images (e.g., Sugar > Paint,

Ruler):

Circular templates of variable size

Measuring tools (ruler)

Changing the image size/orientation (rotation)

How can you compare 2 images?

Saturation levels (brightness encoding)

3- Moon phases: observing

- Debate: ask about the nature, duration and origine of the Moon phases, what they know the respective motions of the triplet Sun-Earth-Moon.
- Collect new images recorded along several weeks
- Comparative work: image analysis, the terminator line and its slow drift
- Experiment notebook: correlate the observability of the Moon (time, direction) with its illuminating phase

Link Sugar / Activity > Moon

existing tool: Sugar / Moon

Moon phases simulation

- Difficulty:escaping the terrestrial referential
- Pre-Requisite knowledge:
 - Sun-Earth-Moon motions
 - the Sun is the only source of light
- Collect and test various hypotheses proposed by the pupils about the nature/origin of the phases. (e.g., link with the Earth shadow?)
- Simulation: with a flashlight and balls
- The pupils mimic the successive positions of the Sun, Earth and Moon

- Details of the Moon surface are revealed by the brightness variations: learn and name the major craters,
- Measure their apparent size and classify them
- The terminator line: why are the mountains and craters best visible close to this line?
- Select phases when the relief is best evidenced
- Simulate mounts and craters on a ball, using mold and a flashlight. Make a picture of the simulation and compare with Moon picture (length and direction of shadows, illumination of the craters limb,...)

4- Relief and Shadows

- The reflecting power
 - Why are some regions more or less bright?
 - The Moon surface reflects the sun light, more or less efficiently
 - Experiment: illuminate a surface made with various materials and try to evaluate (better: measure) the quantity of light reflected by that surface (white or black paper, wood, soil, sand, water, aluminium foil...) make pictures of these experiments and of the surfaces.
 - Classify the tested material depending on their ability to reflect the light.
 - Test the impact of various inclinations of the light rays on the surface
- Conclusion: the brightness variations at the Moon surface can reveal variations of the soil itself

5- The Earth-shine

- Observation with naked eye, then try to make a good picture. (need to saturate the most illuminated part)
- Debate: when, where is it observed (what phase)?
- Simulation : reproduce the related Moon phase(s)
- Simulation: Does the Earth also has phases? what link with the Moon phases?

New referential for the pupil: (s)he is observing the Earth from the Moon. draw the phases of the Earth from the Moon and associate the Moon phases. Simulate (or play) and make picture with the XO-camera (without scope!).

- Simulation: use a reflecting (metal) ball (or a mirror) to mimic the Earth and a dark room la Terre. try to reproduce the Earthshine and make a picture (difficult!)
- Conclude: correlate the 'Full Earth' phase with the Earthshine observation.

6- Apparent size and orbit of the Moon

6- Apparent size and orbit of the Moon

- Observation: the apparent diameter of the Moon changes along the time, why?
- Apparent vs. actual size: play with various familiar objects, using the camera
 - Measure the variation in size of the image of a ball (or the head of a friend!) when it is more or less distant from the camera.
 - Use balls of different size and find the relevant distance where they appear to have the same size on the camera display/image.
- Debate: origin of the apparent size variation of the Moon: distance or volume?
- Simulate and try to conclude on the Earth-Moon distance variation: the Moon orbit is not a perfect circle... but an ellipse!
- Sychology of the vision: the Moon looks bigger when seen right above the horizon (compared to close to the zenith). Is it real or just an illusion? Measure and conclude.

7 - Final questionnaire

- Summary of what has been learnt about the Moon, its relief, motion in the sky...
- the pupils build a questionnaire for the adults to test their knowledge
- They can use the XO tools to analyse the results of the test (XO utilities: Sugar / Activity > Analyse

8 - Earth-Moon distance

- International and collaborative project (La Main à la pâte - coordinated project)
- Synchronised observations from 2 (or more)
 distant locations on Earth. (Moon-bright star or
 Moon-planet conjunction)
- Based on parallax effect
- Simulation: build an Earth-Moon model
- Measurement of Moon-star positions and separation, exchange with partner through Internet. Analysis, comparison and simplified calculation based on the Earth-Moon modelling (through angles measurement)

In practice... Uruguay France Stellarium 0.10.2 Stellarium 0.10.2 Lune Magnitude: -12.31 Magnitude absolue; 32.30 AD/DEC J2000: 3h47m33.4s/+24*57'54.3" AD/DEC de la date: 3h48m9s+24*59'42" Angle horaire/dec: 1h1m57s/+24*59'42" Az/Haut: +343*38'15"/+30*46'20" Distance: 0.00247064 UA Diamètre apparent: +0*32'19.2" 17.9 FPS 04/11/09 06:32:46

- Images of a Moon-eclipse
- Analysis: Comparing the size of the Earth shadow projected onto the Moon surface
- Simulation: reproducing the shadow cone formed between Earth and Moon

